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The electronic structure of cuprate superconductors is studied within the kinetic-energy-driven supercon-
ducting mechanism in the presence of out-of-plane impurities. With increasing impurity concentration, al-
though both superconducting coherence peaks around the nodal and antinodal regions are suppressed, the
position of the leading-edge midpoint of the electron spectrum around the nodal region remains at the same
position, whereas around the antinodal region it is shifted toward higher binding energies, this leads to a strong
deviation from the monotonic d-wave superconducting gap in the out-of-plane impurity-controlled cuprate
superconductors.
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I. INTRODUCTION

The superconducting gap is a fundamental property of
superconductors,1 and the nature of its anisotropy has played
a crucial role in the testing of the microscopic theory of
superconductivity in cuprate superconductors.2 Experimen-
tally, by virtue of systematic measurements,3 particularly us-
ing the angle-resolved photoemission spectroscopy �ARPES�
technique,4 the d-wave nature of the superconducting gap
has been well established by now. In particular, this d-wave
superconducting symmetry remains one of the cornerstones
of our understanding of the physics in cuprate
superconductors.3–7 The early ARPES measurements on the
cuprate superconductor Bi2Sr2CaCu2O8+� �Ref. 8� showed
that in the real space the gap function and the pairing force
have a range of one lattice spacing, and then the
superconducting-gap function is of the monotonic d-wave
form �k=��cos kx−cos ky� /2. Later, the ARPES measure-
ments on the cuprate superconductor Bi2Sr2CaCu2O8+� �Ref.
9� indicated that the superconducting gap significantly devi-
ates from this monotonic d-wave form. Furthermore, it was
argued that this deviation should be attributed to an increase
in the electron correlation, which may increase the intensity
of the higher order of the harmonic component in the mono-
tonic d-wave gap function.9 However, recent ARPES
measurements10,11 on the cuprate superconductors
�Bi,Pb�2�Sr,La�2CuO6+� and Bi2Sr1.6Ln0.4CuO6+�

�Ln-Bi2201� with Ln=La, Nd, and Gd showed that a much
stronger deviation from the monotonic d-wave
superconducting-gap form is unlikely to be due to the strong
correlation effect.

The cuprate superconductors have a layered structure con-
sisting of the two-dimensional CuO2 layers separated by in-
sulating layers.12,13 The single common feature is the pres-
ence of the CuO2 plane,4,13 and it seems evident that the
unusual behaviors of cuprate superconductors are dominated
by this CuO2 plane.2 It has been well established that the
Cu2+ ions exhibit an antiferromagnetic long-range order in
the parent compounds of cuprate superconductors, and super-
conductivity occurs when the antiferromagnetic long-range
order state is suppressed by doped charge carriers.13 Since
these doped charge carriers are induced by the replacement

of ions by those with different valences or the addition of
excess oxygens in the block layer, therefore in principle, all
cuprate superconductors have naturally impurities �or disor-
der�. However, for the cuprate superconductors
�Bi,Pb�2�Sr,La�2CuO6+� and Ln-Bi2201, the mismatch in
the ionic radius between Bi and Pb or Sr and Ln causes the
out-of-plane impurities,14 where the concentration of the out-
of-plane impurities is controlled by varying the radius of the
Pb or Ln ions, and then the superconducting transition tem-
perature Tc is found to be decreasing with increasing impu-
rity concentration. These cuprate superconductors
�Bi,Pb�2�Sr,La�2CuO6+� and Ln-Bi2201 are often referred to
as the out-of-plane impurity-controlled cuprate supercon-
ductors. Recently, the electronic structure of the out-of-plane
impurity-controlled cuprate superconductors and the related
superconducting-gap function have been investigated experi-
mentally by using ARPES.10,11 It was shown that although
the effect of the out-of-plane impurity scattering around the
antinodal region is much stronger than that around the nodal
region, both superconducting coherence peaks around the
nodal and antinodal regions are suppressed. Furthermore, the
magnitude of the deviation from the monotonic d-wave
superconducting-gap form increases with increasing impurity
concentration.10,11 The appearance of the strong deviation
from the monotonic d-wave superconducting-gap form, ob-
served recently in the out-of-plane impurity-controlled cu-
prate superconductors �Bi,Pb�2�Sr,La�2CuO6+� and
Ln-Bi2201, is the most remarkable effect,10,11 however, its
full understanding is still a challenging issue. To the best of
our knowledge, this strong deviation from the monotonic
d-wave superconducting-gap form in the out-of-plane
impurity-controlled cuprate superconductors has not been
treated starting from a microscopic superconducting theory
yet.

In the absence of out-of-plane impurity scattering, the
electronic structure of cuprate superconductors in the super-
conducting state has been discussed15,16 within the frame-
work of the kinetic-energy-driven superconductivity,17 where
the superconducting-gap function has a monotonic d-wave
form, and the main features of the ARPES experiments4 on
cuprate superconductors have been reproduced. In this paper,
we study the electronic structure of the out-of-plane
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impurity-controlled cuprate superconductors in the supercon-
ducting state and the related superconducting-gap function
along with this line. We employ the t-J model by considering
the out-of-plane impurity scattering, and then show explicitly
that the strong deviation from the monotonic d-wave
superconducting-gap form occurs due to the presence of the
impurity scattering. Although both sharp superconducting
coherence peaks around the nodal and antinodal regions are
suppressed, the effect of the impurity scattering is stronger in
the antinodal region than that in the nodal region. Our results
also show that the electronic structure of the out-of-plane
impurity-controlled cuprate superconductors in the supercon-
ducting state can be understood within the framework of the
kinetic-energy-driven superconducting mechanism with the
out-of-plane impurity scattering taken into account.

This paper is organized as follows. In Sec. II we present
the basic formalism of the electronic-structure calculation in
the presence of the out-of-plane impurities. Within this the-
oretical framework, we discuss the electronic structure of the
out-of-plane impurity-controlled cuprate superconductors in
the superconducting state and the related superconducting-
gap function in Sec. III, where we show that the well-
pronounced deviation from the monotonic d-wave
superconducting-gap form is mainly caused by the out-of-
plane impurity scattering. Finally, we give a summary in Sec.
IV.

II. FORMALISM

It has been shown that the essential physics of cuprate
superconductors is properly accounted by the two-
dimensional t-J model on a square lattice,2

H = − t�
i�̂�

Ci�
† Ci+�̂� + t��

i�̂�

Ci�
† Ci+�̂� + ��

i�

Ci�
† Ci�

+ J�
i�̂

Si · Si+�̂, �1�

acting on the Hilbert subspace with no doubly occupied site,
i.e., ��Ci�

† Ci��1, where �̂= � x̂ , � ŷ, �̂= � x̂� ŷ, Ci�
† �Ci��

is the creation �annihilation� operator of an electron with spin
�, Si= �Si

x ,Si
y ,Si

z� are spin operators, and � is the chemical
potential. To deal with the constraint of no double occupancy
in analytical calculations, the charge-spin separation
fermion-spin theory18 has been developed, where the con-
strained electron operators Ci↑ and Ci↓ are decoupled as
Ci↑=hi↑

† Si
− and Ci↓=hi↓

† Si
+, respectively, here the spinful fer-

mion operator hi�=e−i	i�hi describes the charge degree of
freedom together with some effects of spin configuration re-
arrangements due to the presence of the doped charge carrier
itself, while the spin operator Si describes the spin degree of
freedom, then the electron on-site local constraint for
the single occupancy, ��Ci�

† Ci�=Si
+hi↑hi↑

† Si
−+Si

−hi↓hi↓
† Si

+

=hihi
†�Si

+Si
−+Si

−Si
+�=1−hi

†hi�1, is satisfied in analytical cal-
culations. In particular, it has been shown that under the
decoupling scheme, this charge-spin separation fermion-spin
representation is a natural representation of the constrained
electron defined in the Hilbert subspace without double elec-
tron occupancy.16 Furthermore, these charge carrier and spin

are gauge invariant,18 and in this sense they are real and can
be interpreted as physical excitations.19 In this charge-spin
separation fermion-spin representation, the t-J model �Eq.
�1�� can be expressed as,

H = t�
i�̂

�hi+�̂↑
† hi↑Si

+Si+�̂
− + hi+�̂↓

† hi↓Si
−Si+�̂

+ �

− t��
i�̂

�hi+�̂↑
† hi↑Si

+Si+�̂
− + hi+�̂↓

† hi↓Si
−Si+�̂

+ � − ��
i�

hi�
† hi�

+ Jeff�
i�̂

Si · Si+�̂, �2�

with Jeff= �1−��2J, and �= �hi�
† hi��= �hi

†hi� being the charge-
carrier doping concentration. This Jeff is similar to that ob-
tained in Gutzwiller approach.7 As an important conse-
quence, the kinetic-energy term in the t-J model has been
transferred as the interaction between charge carriers and
spins, which reflects that even the kinetic-energy term in the
t-J Hamiltonian has a strong Coulombic contribution due to
the restriction of no double occupancy of a given site. This
interaction from the kinetic-energy term is quite strong, and
it has been shown17 in terms of the Eliashberg’s strong cou-
pling theory20 that in the case without an antiferromagnetic
long-range order, this interaction can induce a charge-carrier
pairing state �then the electron Cooper pairing state� with
d-wave symmetry by exchanging spin excitations in the
higher power of the charge-carrier doping concentration �. In
this case, the electron Cooper pairs originating from the
charge-carrier pairing state are due to the charge-spin recom-
bination, and their condensation reveals the d-wave super-
conducting ground state. Furthermore, this d-wave supercon-
ducting state is controlled by both the superconducting-gap
function and the quasiparticle coherence, which leads to the
fact that the maximal superconducting transition temperature
occurs around the optimal doping, and then decreases in both
underdoped and overdoped regimes.17 Moreover, it has been
shown15,16 that this superconducting state is the conventional
Bardeen-Cooper-Schrieffer �BCS� like1,21 with the d-wave
symmetry, so that the basic BCS formalism with the d-wave
superconducting-gap function is still valid in quantitatively
reproducing all main low-energy features of the ARPES ex-
perimental measurements on cuprate superconductors, al-
though the pairing mechanism is driven by the kinetic energy
by exchanging spin excitations, and other exotic magnetic
scattering22 is beyond the BCS formalism. Following previ-
ous discussions,15–17 the full charge-carrier Green’s function
in the superconducting state with a monotonic d-wave gap
function can be obtained in the Nambu representation as,23

g̃�k,
� = ZhF
1


2 − Ehk
2 �
 + �̄k �̄hZ�k�

�̄hZ�k� 
 − �̄k

	
= ZhF


�0 + �̄hZ�k��1 + �̄k�3


2 − Ehk
2 , �3�

where �0 is the unit matrix, �1 and �3 are the Pauli matrices,

the renormalized charge-carrier excitation spectrum �̄k
=ZhF�k, with the mean-field charge-carrier excitation spec-
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trum �k=Zt�1k−Zt��2k�−�, the spin-correlation functions
�1= �Si

+Si+�̂
− � and �2= �Si

+Si+�̂
− �, k= �1 /Z���̂eik·�̂, k�

= �1 /Z���̂e
ik·�̂, Z is the number of the nearest-neighbor or

next-nearest-neighbor sites, the renormalized charge-carrier

monotonic d-wave pair gap function �̄hZ�k�=ZhF�̄h�k�,
where the effective charge-carrier monotonic d-wave pair

gap function �̄h�k�= �̄hk
�d� with k

�d�= �cos kx−cos ky� /2, and
the charge-carrier quasiparticle spectrum Ehk

=
�̄k
2 + ��̄hZ�k��2. The charge-carrier quasiparticle coherent

weight ZhF and effective charge-carrier gap parameter �̄h are
determined by the following two equations:15–17

1 =
1

N3 �
k,p,p�

�p+k
2 k−p�+p

�d� k
�d� ZhF

2

Ehk

BpBp�


p
p�
� F1

�1��k,p,p��
�
p� − 
p�2 − Ehk

2

−
F1

�2��k,p,p��
�
p� + 
p�2 − Ehk

2 	 , �4a�

1

ZhF
= 1 +

1

N2 �
p,p�

�p+k0

2 ZhF

BpBp�

4
p
p�
� F2

�1��p,p��
�
p − 
p� − Ehp−p�+k0

�2

+
F2

�2��p,p��
�
p − 
p� + Ehp−p�+k0

�2 +
F2

�3��p,p��
�
p + 
p� − Ehp−p�+k0

�2

+
F2

�4��p,p��
�
p + 
p� + Ehp−p�+k0

�2	 , �4b�

respectively, where k0= �� ,0�, �k=Ztk−Zt�k�, Bp
=2�1�A1p−A2�−�2�2�2

zp�−�2�, �1=2ZJeff, �2=4Z�2t�, A1
=��1

z +�1 /2, A2=�1
z +��1 /2, �=1+2t�1 /Jeff, the charge-

carrier’s particle-hole parameters �1= �hi�
† hi+�̂�� and �2

= �hi�
† hi+�̂��, the spin-correlation functions �1

z = �Si
zSi+�̂

z � and
�2

z = �Si
zSi+�̂

z �,

F1
�1��k,p,p�� = �
p� − 
p��nB�
p� − nB�
p����1 − 2nF�Ehk��

+ Ehk�nB�
p��nB�− 
p� + nB�
p�nB�− 
p��� ,

F1
�2��k,p,p�� = �
p� + 
p��nB�− 
p�� − nB�
p���1 − 2nF�Ehk��

+ Ehk�nB�
p��nB�
p� + nB�− 
p��nB�− 
p�� ,

F2
�1��p,p�� = nF�Ehp−p�+k0

��nB�
p�� − nB�
p��

− nB�
p�nB�− 
p�� ,

F2
�2��p,p�� = nF�Ehp−p�+k0

��nB�
p� − nB�
p���

− nB�
p��nB�− 
p� ,

F2
�3��p,p�� = nF�Ehp−p�+k0

��nB�
p�� − nB�− 
p��

+ nB�
p�nB�
p�� ,

F2
�4��p,p�� = nF�Ehp−p�+k0

��nB�− 
p�� − nB�
p��

+ nB�− 
p�nB�− 
p�� ,

nB�
p� and nF�Ehk� are the boson and fermion distribution
functions, respectively, and the mean-field spin excitation
spectrum,


p
2 = �1

2��A4 − ���1
zp −

1

2Z
���1	�1 − �p�

+
1

2
��A3 −

1

2
��1

z − ��1p	�� − p�
+ �2

2����2
zp� −

3

2Z
�2	p� +

1

2
�A5 −

1

2
��2

z	
+ �1�2���1

z�1 − �p�p� +
1

2
���1p� − C3��� − p�

+ �p��C3
z − ��2

zp� −
1

2
���C3 − �2p� , �5�

where A3=�C1+ �1−�� / �2Z�, A4=�C1
z + �1−�� / �4Z�,

A5=�C2+ �1−�� / �2Z�, and the spin-correlation functions

C1= �1 /Z2���̂,��
ˆ �Si+�̂

+ S
i+��̂

−
�, C1

z = �1 /Z2���̂,��
ˆ �Si+�̂

z S
i+��̂

z
�,

C2= �1 /Z2���̂,��
ˆ �Si+�̂

+ S
i+��̂

−
�, C3= �1 /Z���̂�Si+�̂

+ Si+�̂
− �, and

C3
z = �1 /Z���̂�Si+�̂

z Si+�̂
z �. In order to satisfy the sum rule of the

correlation function �Si
+Si

−�=1 /2 in the case without the an-
tiferromagnetic long-range order, an important decoupling
parameter � has been introduced in the above
calculation,15–17 which can be regarded as the vertex correc-
tion. These two Eqs. �4a� and �4b� must be solved simulta-
neously with other self-consistent equations, then all order
parameters, the decoupling parameter � and the chemical
potential � are determined by the self-consistent
calculation.15–17 In this sense, the calculations in this kinetic-
energy-driven superconductivity scheme are controllable
without using any adjustable parameters. We emphasize that
Green’s function �3� is obtained within the kinetic-energy-
driven superconducting mechanism, although the similar
phenomenological expression has been used to discuss the
impurity effect in cuprate superconductors.24,25

With the charge-carrier BCS formalism �Eq. �3�� under
the kinetic-energy-driven superconducting mechanism, we
can now introduce the effect of impurity scatterers into the
electronic structure. In the presence of impurities, the unper-
turbed charge-carrier Green’s function in Eq. �3� is dressed
by impurity scattering,23

g̃I�k,
�−1 = g̃�k,
�−1 − ZhF
−1�̃�k,
� , �6�

with the self-energy function �̃�k ,
�=�����k ,
���. In this
case, the charge-carrier Green’s function in Eq. �6� can be
explicitly rewritten as,
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g̃I�k,
� = �
�

gI��k,
��� = ZhF
�
 − �0�k,
���0 + ��̄hZ�k� + �1�k,
���1 + ��̄k + �3�k,
���3

�
 − �0�k,
��2 − ��̄k + �3�k,
��2 − ��̄hZ�k� + �1�k,
��2
. �7�

Based on this Green’s function �7�, we23 have discussed the
effect of the extended impurity scatterers on the quasiparticle
transport of cuprate superconductors in the superconducting
state within the nodal approximation of the quasiparticle ex-
citations and scattering processes, where the main effect on
the quasiparticle transport comes from the extended impurity
forward �or diagonal� scatterers, and therefore the compo-
nent of the self-energy function �1�k ,
� has been neglected,
while the components of �0�k ,
� and �3�k ,
� have been
treated within the framework of the T-matrix approximation.
However, it has been demonstrated that the superconducting
transition temperature is considerably affected by the out-of-
plane impurity scattering in spite of a relatively weak in-
crease in the residual resistivity.14 This reflects the fact that
the superconducting pairing is very sensitive to the out-of-
plane impurity scattering, and then the effect of the out-of-
plane impurity scattering is always accompanied by breaking
of the superconducting pairs. In this case, the out-of-plane
impurities can be described as the elastic off-diagonal scat-
terers or pairing impurity scatterers. In particular, the modu-
lation of the out-of-plane impurity scattering potential ob-
served in scanning tunneling microscopy experiments26 has a
characteristic wavelength of a few lattice spacings, this may
arise because the impurities give rise to an atomic-scale
modulation of the charge-carrier pairing potential which
causes larger, coherence length size fluctuations in the out-
of-plane impurity scattering potential.27 Furthermore, the
crude effect of the order parameter modulations on the qua-
siparticle scattering by allowing the order parameter to be
modulated on the four bonds around the impurity has been
estimated25 by adding the off-diagonal scattering potential,

V̂ = �
k,k�

�V�k� + V�k����1

=
1

2
V0 �

k,k�

��cos kx − cos ky� + �cos kx� − cos ky����1, �8�

to the phenomenological d-wave BCS Hamiltonian, then it
was shown that the scattering rate is largest at the antinode.

The exact form of the out-of-plane impurity scattering
potential is very important for a better understanding of the
electronic structure of the out-of-plane impurity-controlled
cuprate superconductors. In the following discussions, we
determine the form of the out-of-plane impurity scattering
potential in terms of the calculation of Dyson’s equation. The
potential which scatters the electron is taken as summation of

impurity potentials Ṽ=�lV�ri−Rl�, where the summation is
over all impurity sites l, and then its Fourier transform is

obtained28,29 as Ṽ�q�=�iV�q���q�, where

��q� = �
k

hk+q
† hk, �9�

�i�q� = �
l

exp iq · Rl, �10�

are the charge-carrier density in the Nambu representation
and the impurity density, respectively. In the calculation of
the self-energy function induced by the impurity scattering,
usually it is assumed that the impurities are randomly located
and that there is no correlation between their positions.28,29

In this case, the self-energy function can be obtained as

�̃�k ,
�= �̃�1��k ,
�+ �̃�2��k ,
� within the Born approxima-
tion, with the corresponding first-order and second-order
self-energy functions are evaluated as,28,29

�̃�1��k,
� = �i�
k�

�k�=0V�k�� = �iV�0� , �11a�

�̃�2��k,
� = �i �
k�,k�

�k�+k�=0V�k��g̃I�k + k�,
�V�k��

= �i�
k�

V�k��g̃I�k + k�,
�V�− k�� , �11b�

where �i is the impurity concentration. As we have men-
tioned above, the out-of-plane impurities are the off-diagonal
scatterers. Although their scattering has a very weak effect
on the residual resistivity for cuprate superconductors, a
heavy effect on the d-wave superconducting state is observed
experimentally.14 With these considerations, we introduce the
following out-of-plane impurity scattering potential:

Ṽ = �
k�

V�k���1 = V0�
k�

�cos kx� − cos ky���1. �12�

In this case, V�0�=V0�cos�0�−cos�0��=0 �then �̃1�k ,
�=0�,
and �̃�k ,
�= �̃�2��k ,
�. This form of the out-of-plane impu-
rity scattering potential in Eq. �12� is very similar to that in
Eq. �8� used in Ref. 25, and the scattering rate is also largest
at the antinode. This is, indeed, confirmed by the quantitative
characteristics presented in the following section. With the
help of the impurity scattering potential in Eq. �12�, the com-

ponents of the charge-carrier self-energy function �̃�k ,
�
are obtained explicitly as,

�0�k,
� = �i
1

N�
k�

�V�k���2gI0�k� + k,
�

= �i
1

N�
k�

�V�k� − k��2gI0�k�,
� , �13a�
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�3�k,
� = − �i
1

N�
k�

�V�k���2gI3�k� + k,
�

= − �i
1

N �
k�+k

�V�k� − k��2gI3�k�,
� , �13b�

�1�k,
� = �i
1

N�
k�

�V�k���2gI1�k� + k,
�

= �i
1

N�
k�

�V�k� − k��2gI1�k�,
� . �13c�

In the charge-spin separation fermion-spin theory,18 the
electron diagonal and off-diagonal Green’s functions
are the convolutions of the spin Green’s function15–17

D−1�p ,
�= �
2−
p
2� /Bp and the charge-carrier diagonal and

off-diagonal Green’s functions in Eq. �7�, respectively. These
convolutions reflect the charge-spin recombination.30 Fol-
lowing the previous discussions,15–17 we can obtain the elec-
tron diagonal and off-diagonal Green’s functions in the
present case. Then the electron spectral function from the
electron diagonal Green’s function is found explicitly as,

A�k,
� =
1

N
�
p

Bp

2
p
��nB�
p� + nF�
p − 
��Ah�p − k,
p − 
�

− �nB�− 
p� + nF�− 
p − 
��Ah�p − k,− 
p − 
�� ,

�14�

where Ah is the charge-carrier spectral function, which can
be expressed as Ah=−2 Im gI

dia�k ,
�, with gI
dia obtained

from Eq. �7� as,

gI
dia�k,
� = ZhF


 − �0�k,
� + �̄k + �3�k,
�

�
 − �0�k,
��2 − ��̄k + �3�k,
��2 − ��̄hZ�k� + �1�k,
��2
. �15�

III. ELECTRONIC STRUCTURE OF THE OUT-OF-PLANE
IMPURITY-CONTROLLED CUPRATE

SUPERCONDUCTORS

Experimentally, it has been shown that the average of the
next-nearest-neighbor hopping t� is not appreciably affected
by the out-of-plane impurities.11 In this case, the commonly
used parameters in this paper are chosen as t /J=2.5 and
t� / t=0.3. We are now ready to discuss the electronic struc-
ture of the out-of-plane impurity-controlled cuprate super-
conductors and the related superconducting gap. In cuprate
superconductors, the information revealed by ARPES
experiments4 has shown that around the nodal �� /2,� /2�
and antinodal �� ,0� points of the Brillouin zone contains the
essentials of the whole low-energy quasiparticle excitation
spectrum. In this case, we have performed a calculation for
the electron spectral function A�k ,
� in Eq. �14� at both
nodal and antinodal points. The results at �a� the nodal point
and �b� the antinodal point with the impurity concentration
�i=0.001 �solid line�, �i=0.002 �dashed line�, and �i=0.003
�dotted line� under the impurity scattering potential with V0
=50 J for the charge-carrier doping concentration �=0.15
are plotted in Fig. 1. For comparison, the corresponding
ARPES experimental results11 for the out-of-plane impurity-
controlled cuprate superconductors Ln-Bi2201 in the super-
conducting state are also presented in Fig. 1 �inset�. Our
results show that the quasiparticle peak is strongly dependent
on the impurity concentration, and the peaks at both nodal
and antinodal points are suppressed due to the presence of
impurity scattering. At the nodal point, there is a sharp su-
perconducting quasiparticle peak near the Fermi energy,
however, although the peak at the high impurity concentra-
tion is dramatically reduced compared to that at the low im-

purity concentration, the position of the leading-edge mid-
point of the electron spectral function remains almost
unchanged. In particular, the position of the leading-edge
midpoint of the electron spectral function reaches the Fermi
level, indicating that there is no superconducting gap. On the
other hand, the spectral intensity from the Fermi energy
down to approximately −1.1 J decreases as the impurity
concentration increases at the antinodal point, this is the
same case as that at the nodal point. However, the position of
the leading-edge midpoint of the electron spectral function is
shifted toward higher binding energies with increasing impu-
rity concentration, this is in contrast with the behavior ob-
served at the nodal point, and indicates the presence of the
superconducting gap. The present results also show that the
effect of the out-of-plane impurity scattering is stronger at
the antinodal point than at the nodal one, in qualitative agree-
ment with the experimental results.10,11
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FIG. 1. The electron spectral function at �a� the nodal point and
�b� the antinodal point with �i=0.001 �solid line�, �i=0.002 �dashed
line�, and �i=0.003 �dotted line� for V0=50 J at �=0.15. Inset: the
corresponding experimental results taken from Ref. 11.
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The behavior of the electron spectrum in Fig. 1 indicates
an enhancement of the superconducting gap in the antinodal
region by the impurity scattering. To show this point clearly,
we have calculated the electron spectral function A�k ,
�
along the direction �� ,0�→ �� /2,� /2�, and then employed
the shift of the leading-edge midpoint as a measure of the
magnitude of the superconducting gap at each momentum
just as it has been done in the experiments.10,11 The results
for the extracted superconducting gap as a function of the
Fermi surface angle �, defined in the inset, with the impurity
concentration �i=0 �dashed line� and �i=0.001 �solid line�
under the impurity scattering potential with V0=50 J for the
charge-carrier doping concentration �=0.15 are plotted in
Fig. 2 in comparison with the corresponding ARPES experi-
mental results for the out-of-plane impurity-controlled cu-
prate superconductor �Bi,Pb�2�Sr,La�2CuO6+� in the super-
conducting state10 �inset�. It is clearly shown that the
superconducting gap � increases with the Fermi surface
angle decreasing from 45° �node� to 0° �antinode�. Although
the superconducting gap in the presence of the impurity scat-
tering is basically consistent with the d-wave symmetry, it is
obvious that there is a strong deviation from the monotonic
d-wave form around the antinodal region. In particular, this
strong deviation is mainly caused by a remarkable enhance-
ment of the superconducting-gap value around the antinodal
region, in qualitative agreement with the experimental
results.10,11 In other words, the superconducting gap around
the antinodal region is strongly enhanced by the impurity
scattering, whereas around the nodal region its value remains
the same. As a consequence, the well-pronounced deviation
from the monotonic d-wave superconducting-gap form in the
out-of-plane impurity-controlled cuprate superconductors is
mainly caused by the effect of the out-of-plane impurity scat-
tering. This is also the reason why the superconducting-gap
function for very high quality samples of the cuprate super-
conductor La1−xSrxCuO4 has a monotonic d-wave form.31

For a better understanding of the impurity-concentration
dependence of the deviation from the monotonic d-wave
superconducting-gap function, we have made a series of cal-
culations for the superconducting gap at different impurity
concentration levels, and the results of the superconducting
gap as a function of the monotonic d-wave function
�cos kx−cos ky� /2 with the impurity concentration �i=0001
�solid line�, �i=0.002 �dashed line�, and �i=0.003 �dotted
line� under the impurity scattering potential with V0=50 J
for the charge-carrier doping concentration �=0.15 are plot-
ted in Fig. 3 in comparison with the corresponding ARPES
experimental results for the out-of-plane impurity-controlled
cuprate superconductors Ln-Bi220111 �inset�. Obviously, our
results show that the magnitude of the deviation from the
monotonic d-wave superconducting-gap form around the an-
tinodal region increases with increasing impurity concentra-
tion, in qualitative agreement with the experimental
results.10,11 This strong out-of-plane impurity effect in the
antinodal region is also consistent with scanning tunneling
spectroscopy results,32 where the average of the
superconducting-gap size, which corresponds to the antin-
odal superconducting gap in the ARPES spectra, increases
with increasing impurity concentration.

Within the framework of the kinetic-energy-driven super-
conducting mechanism17 in the presence of the out-of-plane
impurities, our present results show that the out-of-plane im-
purity scattering potential �12�, in which the impurities
modulate the pair interaction locally, gives qualitative agree-
ment with respect to the main features observed in the
ARPES measurements on the out-of-plane impurity-
controlled cuprate superconductors in the superconducting
state. Although this out-of-plane impurity effect in cuprate
superconductors can also be discussed starting directly from
a phenomenological d-wave BCS formalism,25,27 in this pa-
per we are primarily interested in exploring the general no-
tion of the effects of the out-of-plane impurity scatterers in
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the kinetic-energy-driven cuprate superconductors in the su-
perconducting state. The qualitative agreement between the
present theoretical results and ARPES experimental data also
indicates that the presence of the out-of-plane impurities has
a crucial impact on the electronic structure of cuprate super-
conductors. On the other hand, we emphasize that the quasi-
particle scattering rate in the antinodal region is strongly
increased by the impurity scattering potential �12�, while the
nodal quasiparticles are very weakly scattered by the impu-
rity scattering potential �12�, this is why the superconducting
transition temperature is considerably affected by the out-of-
plane impurity scattering in spite of a relatively weak in-
crease in the residual resistivity,14 since the transport proper-
ties are mainly governed by the quasiparticles in the nodal
region.

IV. SUMMARY

In conclusion, we have shown very clearly in this paper
that if the out-of-plane impurity scattering is taken into ac-
count within the framework of the kinetic-energy-driven
d-wave superconductivity,17 the quasiparticle spectrum of the
t-J model calculated based on the off-diagonal impurity scat-
tering potential �12� per se can correctly reproduce some
main features found in the ARPES measurements on the out-
of-plane impurity-controlled cuprate superconductors in the

superconducting state.10,11 In the presence of the out-of-plane
impurities, although both sharp superconducting coherence
peaks around the nodal and antinodal regions are suppressed,
the effect of the impurity scattering is stronger in the antin-
odal region than that in the nodal region, this leads to a
strong deviation from the monotonic d-wave
superconducting-gap form in the out-of-plane impurity-
controlled cuprate superconductors.

Finally, we have noted that within a phenomenological
BCS approach, the electron spectral properties of the under-
doped cuprates as resulting from a momentum-dependent
pseudogap in the normal state have been discussed,6 where a
normal-state pseudogap function deviating from the mono-
tonic d-wave pseudogap form has been used to fit the
ARPES experimental data in the normal state. It has been
shown13,33 that there are some subtle differences for different
families of underdoped cuprates in the normal state, and
therefore it is possible that the pseudogap in the normal state
is effected by the impurity scattering as well.
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